Oxidative Coupling of Methane over Sodium Promoted Praseodymium Oxide

ANNE M. GAFFNEY, C. ANDREW JONES, JOHN J. LEONARD, AND JOHN A. SOFRANKO

ARCO Chemical Company, A Division of Atlantic Richfield Company, Newtown Square, Pennsylvania 19073

Received February 2, 1988; revised June 29, 1988

Unpromoted and alkali-promoted lanthanide oxides were evaluated in the oxidative coupling of methane to higher hydrocarbons. Methane conversion was carried out catalytically and in a redox mode by cycling methane and air independently over the lanthanide oxides. The sodium-promoted nonstoichiometric oxide, 4% Na on Pr_6O_{11} , was most active and selective, giving in the redox mode 21% methane conversion and 76% C_2^+ selectivity at 800°C and 1.4 WHSV (weight hourly space velocity, g CH₄/g cat. hr). At comparable conversion catalytic methane conversion had a C_2^+ selectivity of 64%. This selectivity deficit with respect to redox is attributed to an additional destructive route of the methyl radical, namely the reaction with molecular oxygen to yield a methylperoxy intermediate. Process variable studies support a mechanism whereby methane is activated at the metal oxide surface to form a methyl radical and in the gas phase C_2^+ hydrocarbon building occurs. © 1988 Academic Press, Inc.

INTRODUCTION

Methane is an abundant resource, making up greater than 60% of the composition of natural gas. There is a strong economic incentive to convert methane to useful products. Due to methane's high molecular stability, its conversion to higher hydrocarbons is a challenge. Recent advances have been made in the noncatalytic approach to C_2^+ hydrocarbons (1, 2). Other current reports have demonstrated the catalytic conversion of methane to C_2^+ products over reducible and nonreducible metal oxides. Of particular interest is the use of lanthanide sesquioxides, namely lanthanum (3) and samarium oxides. The performance of samarium oxide was shown to be improved upon by the addition of a lithium promoter (4).

This work demonstrates the use of alkalipromoted praseodymium oxide as both a redox agent and a catalyst for methane conversion. Compared to catalytic data obtained over lanthanide sesquioxides, the catalyst of 4% Na on Pr_6O_{11} is at least twice as productive at comparable C_2^+ selectivity and reaction temperature. Process variable studies suggest that methyl radical formation occurs at the metal oxide surface. Higher hydrocarbons form through gasphase reactions, with ethane as the primary product.

EXPERIMENTAL

Catalyst Preparation

The lanthanide oxides Pr_6O_{11} , Tb_4O_7 , CeO₂, La₂O₃, and Nd₂O₃ of 99.9% purity were obtained from Alfa Products. Elemental analysis indicated no cross contamination of the metal oxides. For example, Pr₆O₁₁ contained no detectable amounts of La, Ce, Nd, Sm, or Tb. The lanthanide oxides were calcined at 900°C for 16 hr prior to use. The alkali-promoted lanthanide oxides were prepared by incipient wetness impregnation of the metal oxides with aqueous solutions of the acetate or pyrophosphate salts. This was followed by drying at 110°C for 2 hr and calcining at 900°C for 16 hr. The weight percent alkali loadings were measured by AA (atomic adsorption). The binary oxides, Na₂PrO₃ and Li₂PrO₃, were prepared by dry mix-ball milling the

TABLE 1

Redox	Runs	over	Lanthanide	Oxides ^a
1				

Catalyst ^b :	Pr_6O_{11}	Tb_4O_7	CeO_2
% CH ₄ conv.	99	74.6	39
$\% C_2 + sel.$	0	0.4	0
% Sel. to			
CO	0.3	0	0
CO_2	98.8	96.8	99
Coke	0.9	2.8	1

^a Conditions: 825°C, 600 GHSV, 0.2 WHSV, 2-min cumul. CH₄.

 b Less than 10% CH₄ conv. for UO₃, ThO₂, La₂O₃, Nd₂O₃.

stoichiometric amounts of Na₂O with Pr_6O_{11} and Li₂O with Pr_6O_{11} . These dry mixes were calcined at 950°C for 16 hr. Formation was verified by XRD (X-ray diffraction). The supported reagents of sodium-praseodymium oxides on silica, alumina, and magnesia were prepared by multiple incipient wetness impregnations of the supports with aqueous solutions of $Pr(OAc)_3 \cdot 3H_2O$ followed by drying at 110°C and calcining at 900°C for 16 hr. The calcined and supported praseodymium oxides were subsequently impregnated with aqueous sodium acetate solutions to incipient wetness, dried at 110°C, and calcined at 900°C.

Reactor Apparatus

The catalysts, 1 to 10 ml of 14- to 30mesh pellets, were charged to 14-mm-i.d. quartz tubes containing quartz thermowells and were supported on quartz plugs. The reaction tubes were electrically heated to reaction temperatures under a flow of air. The reported reaction temperatures represent the highest temperature realized across the catalyst bed under the run conditions. In a typical redox sequence the air was purged from the reactor with nitrogen before the methane sequence began. Methane conversion redox runs were typically 1 to 10 min in length. During this time instantaneous, or on-line, samples were taken. The total cumulative effluent was also collected in a gas bag. The end of the methane redox run was followed by a nitrogen purge. The redox agent was then reoxidized with air at reaction temperature. This also served to burn off carbonaceous material. The regeneration gases were also collected in a gas bag so that a coke yield could be calculated. During the catalytic runs with a feed of 50% air in methane, gaseous effluents were sampled instantaneously after at least 30 min under each set of run conditions to allow performance to stabilize. Under the reaction conditions employed, oxygen conversion was always greater than 90%.

GC Method

Samples were analyzed for carbon monoxide, carbon dioxide, methane, ethane, ethylene, oxygen, and nitrogen on a TCD-GC (thermal conductivity detector-gas chromatograph). The parallel columns used for this one-injection analysis were of molecular sieve and Porapak Q. The C_2 through C₇ hydrocarbon products were analyzed on a Porapak Super Q column in a FID-GC (flame ionization detector-gas chromatograph). The carbon oxides formed upon regeneration after a redox run were included in the total product yields that were summed to give the methane conversion and normalized to give product selectivities. Results are reported on a carbon mole percent basis. Selectivity to desired products, C_2-C_7 hydrocarbons, will be referred to as C_2^+ .

REDOX RESULTS

Initial evaluation of the lanthanide oxides was carried in a redox mode by cycling methane and air independently over the metal oxide. Under the reaction conditions given in Table 1, methane conversions of less than 10% were obtained for La₂O₃, Nd₂O₃, and Eu₃O₄, whereas Pr_6O_{11} , Tb_4O_7 , and CeO₂ were highly reactive giving at least 39% methane conversion. For the latter three reagents greater than 96% of the product was CO₂. Addition of sodium

ΤA	BL	Æ	2
----	----	---	---

Catalyst:	4% Na on $Pr_6O_{11}^{b}$	4% Na on Tb ₄ O ₇ ^b	4% Na on CeO_2	
% CH ₄ conv.	27.5	20.1	1.8	
$\% C_2 + sel.$	70.3	59.0	47.7	
Productivity g product/	0.14	0.08	0.003	
g cat. hr				
% Sel. to				
C_2H_4	33.8	32.7	31.8	
C_2H_6	24.3	18.3	15.9	
C_3	7.0	4.6	0	
C ₄	2.5	1.7	0	
C ₅	0.3	0.2	0	
C ₆	2.0	1.3	0	
C ₇	0.3	0.2	0	
CO	0	0	0	
CO_2	28.8	40.3	38.4	
Coke	0.8	0.7	13.9	

Redox Runs over Sodium-Promoted Lanthanide Oxides^a

^a Sodium-promoted lanthanide oxides mentioned in Ref. (17).

^b Conditions: 775°C, 2400 GHSV, 0.7 WHSV, 2-min cumul. CH₄.

^c Conditions: 775°C, 1200 GHSV, 0.37 WHSV, 2-min cumul. CH₄.

markedly improved C_2^+ selectivity as shown in Table 2. Carbonate formation is a potential problem in masking true C_2^+ selectivities. After 200 hr of continuous cycling a 1000-fold stoichiometric excess of methane had passed over the reagent of 4% Na on Pr₆O₁₁ that would have been necessary for sodium carbonate formation. During this time, conversion and selectivity remained constant, eliminating the possibility of carbonate formation. XRD analysis gave no evidence of sodium or sodium-praseodymium oxides. Ion probe mapping analysis indicated that sodium was evenly dispersed on praseodymium oxide. The surface areas of the calcined lanthanide oxides ranged from 3 to 6 m^2/g , whereas the alkali-doped systems, which underwent sintering, had surface areas of 0.7 to 1.9 m^2/g .

Substitution of the sodium promoter with lithium and potassium was investigated at an equivalent alkali : praseodymium atomic ratio, namely 1:3.2. The potassium system had activity equivalent to that of the sodium system but was less selective. The lithium system had C_2^+ selectively comparable to that of sodium system but was half as active. The data are summarized in Table 3. A similar study on alkali-doped magnesia showed no chemical periodicity in the catalytic conversion of methane. Sodium-promoted magnesia gave the highest C_2^+ yield (5).

Studies on the optimization of sodium

TABLE 3

Alkali Promoters on Pr₆O_{11^a}

Wt% promoter:	4% Na	6.6% K	1.2% Li	
Effective ionic radius	Na ⁺¹ , 0.99 Å	K ⁺¹ , 1.38 Å	Li ⁺¹ , 0.59 Å	
% CH4 conv.	27.5	28.6	8.2	
$\% C_2 + sel.$	70.3	50.9	89.4	
Productivity g product/ g cat. hr	0.14	0.12	0.06	
% Sel. to C ₂ H ₄	33.8	29.2	38.5	
C_2H_6	24.3	15.9	36.2	
C ₃	7.0	3.4	8.6	
C₄	2.5	1.2	3.1	
C5	0.3	0.1	0.3	
C ₆	2.0	1.0	2.4	
C ₇	0.3	0.1	0.3	
CO	0	0	0	
CO ₂	28.8	47.7	10.5	
Coke	0.8	1.4	0	
Rel. sel.	1.0	0.7	1.0	

^a Conditions: 775°C, 2400 GHSV, 0.7–0.8 WHSV, 2-min cumul. redox run.

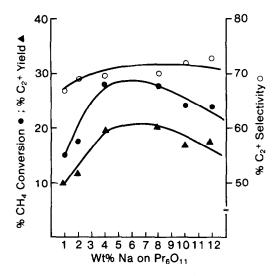


FIG. 1. Methane conversion to C_2^+ hydrocarbons. Two-minute cumulative redox runs at 775°C and 2400 GHSV over Na on Pr₆O₁₁; % CH₄ conversion, \bullet ; % C_2^+ yield, \blacktriangle ; % C_2^+ selectivity, \bigcirc .

loading were carried out with reagents of 1 to 12% sodium on Pr_6O_{11} as shown in Fig. 1. Optimal percentage methane conversion and percentage C_2^+ yield were realized at 4 to 8 wt% sodium. The percentage C_2^+ selectivity was only slightly affected during the loading study, varying from 67 to 72%. Note that 4 wt% sodium is equivalent to 23 mol% sodium. A similar loading study of lithium on samarium oxide gave optimal C_2 yield at 20 mol% lithium and an identical alkali : lanthanide atomic ratio of 1 : 3.2 (6).

TABLE 4

Promoter	Study"
----------	--------

Wt% promoter on Pr ₆ O ₁₁	% CH₄ conv.	% C ₂ ⁺ sel.	Radius (Å)
4% Na	28	70	Na ⁺¹ , 0.99
None	35	2	
16.4% Ag	41	1	Ag ⁺¹ , 1.02
4.2% Mg	40	3	Mg^{+2} , 0.90
6.8% Ca	20	13	Ca ⁺² , 1.00
15.9% Bi	32	16	Bi ⁺³ , 0.99
13.7% Sr	13	24	Sr ⁺² , 1.16
9.4% In	1.5	28	In ⁺³ , 0.92

Note. Promoter: Pr atomic ratio 1:3.2.

" 775°C, 2400 GHSV, 2-min cumul. redox run.

Other metals with effective ionic radii close to that of sodium and praseodymium, namely 0.99 Å, were evaluated at a dopant : praseodymium atomic ratio of 1 : 3.2. For all the doped reagents listed in Table 4 the C_2^+ selectivity never exceeded 28%. A similar study was carried out on promoted magnesia catalysts. At comparable doping levels of 2 to 20 wt%, alkali metals were most effective for C_2^+ formation. Transition metals (Groups 5A, 6A, 7A, 8, and 1B) and 2A (Ca, Sr, Ba), 3A (Y, La), 4A (Zr), 2B (Zn), 3B (Al, In), and 4B (Pb) group additives had a less significant effect on C_2 formation (7).

The reagent of 4% Na on Pr_6O_{11} generated a conversion-selectivity curve similar to that of 15% Mn, 5% Na₄P₂O₇ on SiO₂ (2) (see Fig. 2), but its longevity was much shorter. At 775°C and 0.7 WHSV (weight hourly space velocity) redox performance was maintained for 200 hr at 21% conversion and 79% C₂⁺ selectivity. From 200 to 400 hr deactivation occurred and results leveled out to 6% conversion and 91% C₂⁺ selectivity. This performance was maintained for 850 hr (see Fig. 3). Deactivation was largely attributed to a 53 wt% sodium loss. Note that in the sodium loading study, catalysts of 1 to 2 wt% sodium were signifi-

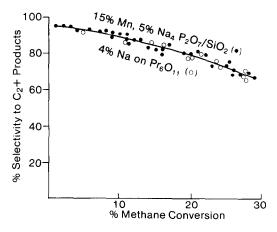


FIG. 2. Methane conversion to higher hydrocarbons. 15% Mn, 5% Na₄P₂O₇/SiO₂ ($\textcircled{\bullet}$): 1- and 2-min cumulative redox runs at 700 to 850°C and 0.51 to 1.02 WHSV. 4% Na on Pr₆O₁₁ (\bigcirc): 1- and 2-min cumulative redox runs at 700 to 825°C and 0.70 to 1.40 WHSV.

ΤA	BL	Æ	5
----	----	---	---

Catalyst	WHSV	% CH4 conv.	% C ₂ ⁺ sel.	Rel. scl.	$\frac{g CH_4 conv}{g cat. hr}$
Na ₂ PrO _{3^a}	0.44	14.3	92.8	1.13	0.06
Li ₂ PrO _{3^a}	0.42	11.1	98.6	1.16	0.05
4% Na on Pr ₆ O ₁₁ "	0.70	27.5	70.3	1.0	0.19
1.2% Li on Pr ₆ O ₁₁ ^b	0.78	8.2	89.4	1.0	0.06

Redox of Selective Phases

" 825°C, 1200 GHSV, 2-min cumul. redox run.

^b 775°C, 2400 GHSV, 2-min cumul. redox run.

cantly less active than those of 4 to 8 wt% sodium.

Alkali-promoted praseodymium reagents gave XRD patterns of PrO_2 , $PrO_{1.83}$, and PrO_x (x < 1.83). In no case were alkali or mixed alkali-praseodymium oxide compounds observed. Two binary oxides, Na₂ PrO_3 and Li₂PrO₃, were prepared for evaluation. These compositions, which were confirmed by XRD, proved to be highly selective reagents at moderate methane conversion. Their selectivity surpassed that of the bulk alkali-promoted reagents as shown in Table 5, but their activities were lower. Again, the possibility of carbonate formation was eliminated by carrying out a sufficient number of redox cycles.

The possibility of reducing catalyst cost by supporting the active components on a carrier was investigated. Sodium-praseodymium oxides supported on silica, alumina, and magnesia were inferior to the nonsupported oxides. XRD analysis indicated formation of praseodymium silicate and aluminate. Praseodymium oxide was only a minor component at best. Thus the majority of praseodymium was locked into a fixed oxidation state and was unable to participate in the redox chemistry as shown in Table 6. Methane conversion was 13% or less for redox runs with the supported oxides whereas for the nonsupported oxide, methane conversion was 36%.

Methane conversion over the reagent of 4% Na on Pr_6O_{11} was carried out over 1through 10-min cumulative redox runs at 775°C and 0.8 WHSV as shown in Fig. 4. The cumulative methane conversion decreased from 26 to 14% and the cumulative

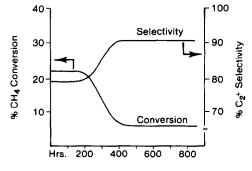


FIG. 3. Life study. Two-minute cumulative redox runs at 775°C and 2400 GHSV over 4% Na (NaOAc) on Pr_6O_{11} .

TABLE 6

Supported Systems

Catalyst ^a	% CH ₄ conv.	$\% C_2^+$ sel.	XRD
1% Na on 20% Pr on silica	2	0	Pr ₈ Si ₆ O ₂₄
1% Na on 20% Pr on alumina	6	13	PrAlO ₃ (major) Pr ₆ O ₁₁ (minor)
1% Na on 20% Pr on MgO	13	30	Pr ₆ O ₁₁ Ca ₂ Pr ₈ (SiO ₄) ₆ O ₂ Pr ₈ Si ₆ O ₂₄
4% Na on Pr ₆ O ₁₁ ^b	36	61	PrO _{1.83}

" 825°C, 600 GHSV, 0.7 WHSV, 2-min cumul. redox run. ^b 825°C, 2400 GHSV, 0.7 WHSV, 2-min cumul. redox run.

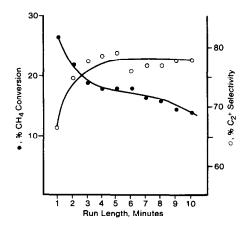


FIG. 4. Effect of reaction time. Cumulative redox results at 775°C and 2400 GHSV over 4% Na on Pr_6O_{11} .

 C_2^+ selectivity increased from 67 to 78%. At the end of the 10-min cumulative run 86% of the active oxygen derived from the reduction of Pr_6O_{11} to Pr_2O_3 was consumed. XRD analysis of the spent catalyst confirmed that the reduced form was the sesquioxide, Pr_2O_3 .

A series of redox runs was carried out at residence times varying from 0.047 to 0.004 s over 4% Na on Pr_6O_{11} . Decreasing the

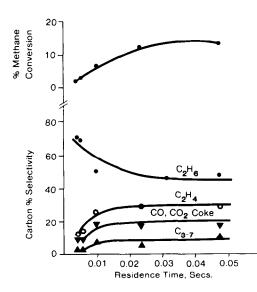


FIG. 5. One-minute cumulative redox runs at 775°C over 4% Na on Pr_6O_{11} .

residence time caused percentage methane conversion to fall from 14 to 2.5%. The percentage C_2H_6 selectivity increased from 48 to 71%, while selectivities to C_2H_4 , CO_x , and C_{3-7} all fell below 12% (see Fig. 5).

CATALYTIC CONVERSION RESULTS

Catalytic oxidative coupling of methane was carried out over 4% Na on Pr₆O₁₁. Activity comparable to that realized in redox was obtained at a run temperature 100°C higher (see Table 7). Also, at comparable conversion the catalyst had a 12 to $15\% C_2^+$ selectivity deficit with respect to redox. As was found in the catalytic oxidative coupling of methane over supported sodiummanganese oxide catalysts (8), optimal C_2^+ selectivity was obtained at higher run temperatures. It should be noted that in the absence of alkali promoter, the praseodymium catalyst gave 15% conversion and 20% C_2^+ selectivity under the catalytic reaction conditions of Table 7. The conversionselectivity curves for catalytic and redox

TABLE 7

Redox vs Cofeed over 4% Na on Pr₆O₁₁

	Redox ^b	Cofeed
Temp. (°C)"	800	900
% CH₄ conv.	21.3	21.8
$\% C_2^+$ sel.	76.4	63.9
Productivity g product/	0.23	0.20
g cat. hr		
% Sel. to		
C_2H_4	25.8	28.8
C_2H_6	38.0	31.9
C ₃	7.3	2.6
C ₄	2.6	0.3
C ₅	0.3	0.1
C ₆	2.1	0.2
C ₇	0.3	0.1
CO	0	0.5
CO_2	22.7	35.6
Coke	0.4	0

^a 4800 GHSV, 1.4 WHSV.

^b 2-min cumul. redox run.

 c Catalytic methane conversion mentioned in Ref. (19).

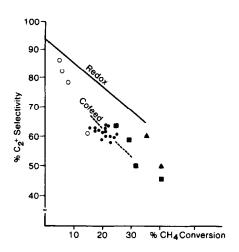


FIG. 6. Redox vs cofeed over 4% Na on Pr_6O_{11} . Redox conditions: 1- and 2-min cumulative redox runs at 700 to 850°C and 0.70 to 1.40 WHSV. Cofeed conditions: 50% air in CH₄ at 825 to 925°C and 0.40 to 1.60 WHSV after 30 min at steady state. Other cofeed lanthanide oxide systems: \bigcirc , Sm_2O_3 (9); \blacktriangle , Li/Sm₂O₃ (5); \blacksquare , LiCl/Sm₂O₃ (20).

results obtained over 4% Na on Pr_6O_{11} are shown in Fig. 6. Both have approximately the same slope; the catalytic conversionselectivity curve is displaced 15 C₂⁺ selectivity points below that of the redox curve.

A life test was carried out with the catalyst of 4% Na as sodium pyrophosphate on Pr₆O₁₁. At 850°C and 0.9 WHSV with 50% air in methane initial catalytic results were 18% methane conversion and 63% C_2^+ selectivity. After 100 hr, steady-state results were 19% conversion and 54% selectivity. Selectivity loss occurred between 50 and 100 hr. The latter performance was maintained from 100 to 3200 hr (see Fig. 7). The C_2^+ yield decreased by 1% to give 10.3%, absolute. Note that the redox life study with sodium acetate-promoted praseodymium oxide underwent a 11.1% decrease in C_2^+ yield to give 5.5% absolute, by 400 hr. No crystalline sodium or phosphorus XRD phases were found in the fresh catalyst. The spent catalyst showed a 0.9 wt% incorporation of silicon from the quartz reactor; SiP₂O₇ was identified by XRD. Inclusion of phosphorus as sodium pyrophosphate led to greater performance stability. The effect of phosphorus may be related to enhanced sodium and surface area retention. Note that with the sodium pyrophosphate promoter the catalyst's surface area and sodium loading decreased by 13 and 30%, respectively, over 3200 hr, whereas with the sodium acetate promoter, the redox reagent's surface area and sodium loading decreased by 25 and 53%, respectively, over 850 hr.

A summary of the catalytic data obtained from the partial oxidation of methane over lanthanide oxides is given in Table 8. At a run temperature comparable to those reported in the literature, the sodium-praseodymium oxide catalyst was an order of magnitude more productive than lanthanum and samarium oxides. And at higher temperatures, where C_2^+ selectivity was optimal, the sodium-praseodymium oxide catalyst gave C_2^+ selectivity competitive with that of lithium-samarium oxide.

The catalytic activity of samarium oxide was evaluated at higher temperatures, oxygen partial pressures, and methane WHSV than those reported in the literature (9) as shown in Table 9. Under comparable conditions the catalyst of 4% Na on Pr_6O_{11} was considerably more active and selective than samarium oxide. For the latter catalyst percentage conversion, C_2^+ yield and C_2^+ selectivity increased with run temperature and maximized at 925°C, whereas for samarium oxide performance was relatively insensitive to temperature. From 700 to 950°C methane conversion varied from 12 to 14%

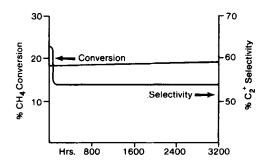


FIG. 7. Life study. 50% air in CH₄ at 850°C and 2400 GHSV over 4% Na(Na₄P₂O₇) or Pr_6O_{11} .

Catalyst	Temp. (°C)	CH ₄ /O ₂	CH ₄ pressure (atm)	CH ₄ (WHSV)	% CH ₄ conv.	% C ₂ ⁺ sel.	Productivity g product g cat. hr	Ref.
4% Na on	900	5	0.5	1.4	21.8	63.9	0.20	This work
Pr ₆ O ₁₁	775	5	0.5	1.4	17.0	50.9	0.12	
La_2O_3	725	3.4	0.08	1.0	19.7	23.7	0.05	(3)
Sm_2O_3	750	5.2	0.18	0.18	15.1	60.6	0.016	(9)
Li/Sm ₂ O ₃	750	2.5	0.05	0.20	35.0	60.0	0.042	(5)
LiCl/Sm ₂ O ₃	750	2.5	0.10	0.10	31.1	49.7	0.015	(20)

TABLE	8
-------	---

Methane Conversion over Lanthanide Oxides

and C_2^+ selectivity varied from 25 to 36%. The higher run temperatures gave a higher yield to CO_x . A control run with an empty alumina tube at identical flow rates and 925°C (0.4 s residence time) gave thermal results of 4.2% methane conversion and 50% C_2^+ selectivity.

DISCUSSION

As redox reagents the nonstoichiometric oxides, Pr₆O₁₁ and Tb₄O₇, showed higher activity toward methane than the other lanthanide oxides investigated. Studies on the catalytic oxidation of nitric oxide (10) and butane (11) likewise found higher activity for Pr₆O₁₁ and Tb₄O₇ than the other lanthanide oxides. There is no correlation between methane conversion and basicity (i.e., ionic radius). The higher reactivity of the nonstoichiometric oxides may be attributed to three factors: (i) rapid interconversion of oxidation states $(Ln^{3+} \rightleftharpoons Ln^{4+})$, (ii) rapid diffusion of O_2 in the bulk, and (iii) high Ln^{4+}/Ln^{3+} oxidation potentials.

Addition of sodium reduced the lanthanide oxide's activity and improved C_2^+ selectivity. With a more basic surface there was less of a tendency for interaction with olefinic and aromatic products. Once activated at these temperatures, such products are prone to coking or overoxidation by the oxidizing surface. Calculations indicate that monolayer sodium coverage on Pr_6O_{11} is achieved at 0.4 wt%. But it is conceivable that a substantial amount of sodium migrates into the Pr₆O₁₁ lattice structure thus accounting for the optimal loading of 4 to 8 wt%.

The lanthanide oxides were evaluated by other investigators as catalysts in the oxidative coupling of methane. These studies did not access the redox capability of the metal

Catalytic Methane Conversion							
Catalyst	Temp. (°C)	CH4 (WHSV/GHSV)	% CH₄ conv.	% C ₂ ⁺ sel.	Productivity g product g cat. hr		
4% Na (Na ₄ P ₂ O ₇) on Pr ₆ O ₁₁	925	4.5/9600	20.7	59.3	0.55		
Sm_2O_3	925	3.1/9600	13.3	31.4	0.13		
Empty tube	925	а	4.2	50.1			

TABLE 9

^a Identical flow rates to those above.

oxides. In the case of lanthanum oxide, ESR studies suggested that the superoxide anion, O_2^- , was the active species (12). Interestingly, Campbell et al. (13) and Otsuka et al. (9) found that the catalysts, CeO_2 , Pr_6O_{11} , and Tb_4O_7 , were least reactive of the unpromoted lanthanide oxides toward methane. These latter two authors disagree on the order of catalytic activity. The former rates (13) $Nd_2O_3 > La_2O_3 > Sm_2O_3$ > Dy₂O₃, while the latter rates (9) Sm₂O₃ > Ho_2O_3 , $Gd_2O_3 > Dy_2O_3$, Nd_2O_3 , La_2O_3 . Discrepancies may be attributed to metal oxide impurities and differences in catalyst pretreatment. Otsuka proposed that for samarium oxide the active oxygen species responsible for methane activation was a diatomic species such as O_2 , O_2^- , or O_2^{2-} on the surface (14). Otsuka also proposed that the peroxide anion, O_2^{2-} , was the oxygen species responsible for methane activation in the catalytic oxidation of methane over sodium peroxide, Na₂O₂ (15). The stable metal oxide forms for the alkali promoters reported within are Li₂O (O²⁻, oxide anion), Na_2O_2 (O_2^{2-} , peroxide anion), and KO_2 $(O_2^-, superoxide anion).$

The C_2^+ product distributions for the alkali-promoted lanthanide oxides listed in Tables 2 and 3 are very similar to one another. This similarity supports a mechanism whereby a methyl radical is generated at the metal oxide surface and hydrocarbon building steps occur in the gas phase. Also, the C_2^+ product slates obtained from both redox and catalytic runs over 4% Na on Pr_6O_{11} are similar to one another, as shown in Table 7. This similarity suggests that both processes have identical mechanisms for hydrocarbon building, namely the gasphase coupling of methyl radicals. The $C_2^{2^{-}}/$ C_2 ratio is higher for the catalytic vs redox process, largely due to the higher run temperature promoting thermal dehydrogenation and the additional route leading to olefin:

$$R^{\cdot} + O_2 \rightarrow Olefin + HO_2^{\cdot}$$

The product distribution vs residence time results summarized in Fig. 5 indicate that

methyl radicals are the first species formed upon methane activation and that ethane is the initial hydrocarbon product formed.

The parallel conversion-selectivity curves of Fig. 6 show a constant 15% C_2^+ selectivity deficit for the catalytic vs redox process. This observation suggests that an additional primary reaction of the methyl radical with molecular oxygen to yield CO_x may be operative in the catalytic mode. The fact that the CO_x selectivity decreases with increasing temperature suggests that the primary reaction may be reversible. Lunsford *et al.* (3) used Eq. (1) to account for the lower CO_x selectivity at higher temperature. That is, the equilibrium concentration of the methylperoxy radical decreases with higher temperature,

$$CH_3 + O_2 \rightleftharpoons CH_3O_2 \rightarrow O_x$$
 (1)

In the catalytic reaction carbon oxide formation occurs predominantly at the surface via allylic oxidation of olefins or coking of olefins and aromatics. The contribution to carbon oxide formation by reaction of methyl radical with molecular oxygen is minor. The general mechanism for the catalytic conversion methane is the following:

C-H Bond Activation

$$R-H + MO_x \rightarrow R^{-} + MO_xH$$

Hydrocarbon Building

$$2R^{\cdot} \rightarrow R - R$$

$$R^{\cdot} + \text{Olefin} \rightarrow R - \text{Olefin} + \text{H}^{\cdot}$$

$$_{n}\text{Olefin} \stackrel{\Delta}{\rightleftharpoons} (\text{Olefin})_{n}$$

Dehydrogenation

 $R-H + MO_x \rightarrow \text{Olefin} + MO_{x-1} + H_2O$ $R-H \stackrel{\Delta}{\rightleftharpoons} \text{Olefins} + H_2$ $R^{\cdot} + O_2 \rightarrow \text{Olefin} + HO_2^{\cdot}$ $Oxide \ Formation$ $Olefins \stackrel{MO_x}{\rightarrow} CO, \ CO_2$ $CH_3 \stackrel{MO_x}{\rightarrow} CO + \frac{3}{2} H_2$

$$CH_3^{\circ} + O_2 \rightleftharpoons CH_3O_2^{\circ} \rightarrow CO, CO_2$$

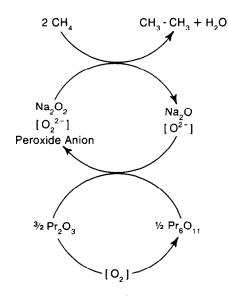


FIG. 8. Reaction scheme.

For the redox reaction a similar mechanism is proposed minus the reactions involving molecular oxygen.

In the overall reaction scheme shown in Fig. 8, methane is activated by a peroxide anion, O_2^{2-} , to yield the primary product ethane and the oxide anion, O²⁻. Sodium oxide is regenerated back to sodium peroxide by praseodymium oxide. Molecular oxygen, supplied in a catalytic or redox mode, regenerates the co-catalyst Pr₂O₃ back to Pr_6O_{11} . The proposal that the peroxide anion serves to activate methane is precedented in Otsuka's catalytic methane coupling studies over sodium peroxide (15). Interestingly, all reported reagents and catalysts selective toward C_2^+ products in methane conversion contain an alkali component. Examples of selective catalysts are sodium permanganate on magnesia (8), lithium on magnesia (16), sodium on praseodymium oxide, and lithium on samarium oxide (5). It may be that for all these systems, the oxide, peroxide, or superoxide anion (depending on whether lithium, sodium, or potassium, respectively, is employed) serves to selectively activate methane. As shown in Table 1, in the absence of alkali little or no C_2^+ products form over the

lanthanide oxide. The catalyst of 4% Na on Pr_6O_{11} has a C_2^+ activity rate superior to that of other lanthanide oxides. This may reflect the ability of praseodymium oxide to undergo a rapid $Ln^{3+} \rightleftharpoons Ln^{4+}$ oxidation state change and thus enhance the regeneration rate of sodium oxide. The lithium-promoted samarium oxide catalyst cannot benefit from this redox capability.

CONCLUSION

Unpromoted and alkali-promoted lanthanide oxides were evaluated in the oxidative coupling of methane to higher hydrocarbons. Methane conversion was carried out catalytically and in a redox mode by cycling methane and air independently over the lanthanide oxides. The sodium-promoted nonstoichiometric oxide, 4% Na on Pr₆O₁₁, was most active and selective toward C_2^+ products. A 2-min cumulative redox run at 800°C and 1.4 WHSV gave 21% methane conversion and 76% C_2^+ selectivity (0.23 g product/g cat. hr). In the catalytic reaction, activity comparable to that of redox was obtained at a run temperature 100°C higher. For example, at 900°C and 1.4 WHSV and a cofeed of 50% air in methane, 22% methane conversion and 64% C_{2}^{+} selectivity were realized (0.20 g product/g cat. hr). At comparable conversion the catalytic results had a 12% C⁺₂ selectivity deficit with respect to redox. This is attributed to an additional destructive route of the methyl radical, namely the reaction with molecular oxygen to yield a methylperoxy intermediate. Compared to other catalytic data obtained from the partial oxidation of methane over lanthanide oxides, as reported in the literature, the catalyst of 4%Na on Pr_6O_{11} is at least twice as active at similar run temperatures and has C₂⁺ selectivity better than or competitive with that of the literature. The higher activity of 4% Na on Pr_6O_{11} may be attributed to the ability of praseodymium oxide to undergo a rapid $Ln^{3+} \rightleftharpoons Ln^{4+}$ oxidation state change and thus enhance the regeneration of the proposed active species, the peroxide anion

 $(O_2^{2^-})$. The reported samarium and lanthanum oxide-based catalysts do not benefit from this redox chemistry. Process variable studies support a mechanism whereby methane is activated at the metal oxide surface to form a methyl radical and in the gas phase C_2^+ hydrocarbon building occurs.

ACKNOWLEDGMENTS

The authors thank Beth A. Burnside for technical assistance and Barbara A. King for catalyst characterization.

REFERENCES

- Jones, C. A., Leonard, J. J., and Sofranko, J. A., J. Catal. 103, 302 (1987).
- Jones, C. A., Leonard, J. J., and Sofranko, J. A., J. Catal.103, 311 (1987).
- Lin, C.-H., Campbell, K. D., Wang, J.-X., and Lunsford, J. H., J. Phys. Chem. 90, 534 (1986).
- Otsuka, K., Jinno, K., and Morikawa, A., Chem. Lett., 499 (1985).
- 5. Moriyama, T., Takasaki, N., Iwamatsu, E., and Aika, K., Chem. Lett., 1165 (1986).
- Otsuka, K., Liu, Q., Hatano, M., and Morikawa, A., Chem. Lett., 467 (1986).
- 7. Iwamatsu, E., Moriyama, T., Takasaki, N., and

Aika, K., J. Chem. Soc. Chem. Commun., 19 (1987).

- Sofranko, J. A., Leonard, J. J., Jones, C. A., Gaffney, A. M., and Withers, H. P., "Symposium on Hydrocarbon Oxidation, Amer. Chem. Soc., New Orleans," Vol. 32, p. 763. Aug. 1987.
- Otskua, J., Jinno, K., and Morikawa, A., J. Catal. 100, 353 (1986).
- Takasu, Y., Nishibe, S., and Matsuda, Y., J. Catal. 49, 236 (1977).
- Hahori, T., and Murakami, Y., Shokubai (Catalyst) 18, 41 (1976).
- Wang, J.-X., and Lunsford, J. H., J. Phys. Chem. 90, 3890 (1986).
- 13. Campbell, K. D., Zhang, H., and Lunsford, J. H., "Tenth North American Meeting of the Catalysis Society, May 18, 1987."
- 14. Otsuka, K., and Jinno, K., Inorg. Chim. Acta 121, 237 (1986).
- Otskua, K., Said, A. A., Jinno, K., and Komatsu, T., Chem. Lett., 77 (1987).
- Ito, T., Wand, J. X., Lin, C. H., and Lunsford, J. H., J. Amer. Chem. Soc. 107, 5062 (1985).
- Gaffney, A. M., U.S. Patents 4,499,323 and 4,499,324.
- Jones, C. A., Leonard, J. J., and Sofranko, J. A., U.S. Patent 4,499,322.
- 19. Jones, C. A., Leonard, J. J., and Sofranko, J. A., U.S. Patent 4,523,049.
- Otsuka, K., Liu, Q., and Morikawa, A., J. Chem. Soc. Chem. Commun., 586 (1986).